15th Annual WORLD*Symposium* February 5, 2019 4:30 p.m. ET Regency Ballroom R

Single Intravenous Dose of AAVHSC15 Packaging a Human Phenylalanine Hydroxylase Transgene Results in Durable Correction of Phenylketonuria *In Vivo*

Omar L. Francone, Seemin S. Ahmed, Jeff L. Ellsworth, Deiby Faulkner, Arnold Sengooba, Hillard Rubin, Serena Dollive, Diana Lamppu, Teresa Wright, Albert Seymour

Homology Medicines, Inc., Bedford, MA

Novel recombinant Clade F adeno-associated viruses, originally isolated from normal human CD34+ hematopoietic stem cells (AAVHSCs), show high liver tropism and potential for liverbased gene therapy. Phenylketonuria (PKU) is a rare metabolic disease, resulting from mutations in the hepatic phenylalanine hydroxylase (PAH) gene. PKU is a suitable candidate for rAAV-based gene therapy as it is an autosomal recessive, monogenic defect. There are no current treatments that address the underlying genetic defect in PKU. In PAH^{enu2} mice, a missense mutation (F263S) in the Pah gene greatly reduces enzyme, causing a 40-fold elevation in serum phenylalanine (Phe) on a normal chow diet (containing 1% Phe), making the mice an appropriate animal model for severe PKU. The human PAH transgene, packaged in AAVHSC15 and driven by a ubiquitous promoter (AAVHSC15-PAH), was administered as a single intravenous injection in PAH^{enu2} mice. Mice were fed normal chow throughout the study. Serum levels of Phe and tyrosine (Tyr) [byproduct of Phe metabolism required for production of neurotransmitters] were measured weekly. Livers were harvested and processed to measure vector genomes, mRNA, and PAH enzyme activity. One week post-dose, Phe levels decreased from 2000 μ M to <150 μ M (p<0.0001) and were sustained out to >28 weeks post-dosing (p<0.0001) even as mice had a dietary intake of 1% Phe. Dose-dependent increases in PAH vector genomes, mRNA, and enzymatic activity were observed. Modifying the transgene to include a liver-specific promoter demonstrated decreased serum Phe and increased serum Tyr in PAH^{enu2} mice at ten-fold lower doses compared to the initial research vector. Sustained correction was seen out to 48 weeks in mice on normal chow. These data demonstrated that a single dose of AAVHSC15-PAH, designated HMI-102, resulted in long-term correction of PKU in PAH^{enu2} mice.